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SU_ARY

Some three-dimensional lunar trajectories have been calculated by

integration of the equations of motion of the classical restricted three-

body problem of celestial mechanics. The calculations have been used for

analysis of several aspects of lunar flight including requirements for

achieving lunar impact and for establishment of a close lunar satellite.

The allowable errors in initial conditions for lunar missions are strongly

dependent on the values of the initial injection velocity and the injec-

tion angle. There can be large differences in results obtained from two-

dimensional analyses (in which the vehicle trajectory is assumed to remain

always in the earth-moon plane) and those obtained from three-dimensional

analyses. Some of the accuracy tolerances can be fairly well estimated

by use of a two-body analysis which considers the inclination of the plane

of the vehicle trajectory to the earth-moon plane. Satisfactory orbits

for a relatively close lunar satellite can be obtained with accuracies

in the initial conditions approximately equal to those required for lunar

impact.

INTRODUCTION

The current literature pertaining to three-body lunar trajectory

studies has been almost exclusively confined to planar, or two-dimensional,

analyses in which the space vehicle is always contained in the plane of

motion of the earth and moon. These two-dimensional studies (for instance,

refs. I to 4) have been useful in analyzing basic features of the lunar

exploration problem; however_ they cannot deal with some of the more inter-

esting aspects of the problem. As more sophisticated plans are developed

for lunar exploration, the mathematical studies must include more accurate

representation of the physical conditions in order to perform realistic

trajectory studies. Consideration of the three-dimensionality of the

problem should certainly be included at an early date. It is presumed

that various organizations have considered three-dimensional trajectory

calculations with application to lunar exploration, but very little of

this work has been reported in the literature. One exception is refer-

ence 5 which contains some comparisons of two- and three-dimensional

lunar impact calculations.
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Somethree-dimenslonal lunar trajectory studies have been madeby
the Theoretical Mechanics Division of the Langley Research Center. These
studies have been carried out by integration of the equations of motion
of the classical restricted three-body problem of celestial mechanics.
The integrations were performed by a fourth-order Runge-Kutta numerical
integration procedure on an electronic computer, from which was obtained
a time history of the space-vehlcle velocity and position cc_ponents.
The calculations have been used for analysis of several aspects of lunar
flight including requirements for achieving lunar impact and for the
establishment of a close lunar satellite.

In any presentation of trajectory calculations it is necessary to
choose a fairly limited range of initial conditions for which to present
the results. For the lunar exploration problem, estimates of allowable
tolerances in the initial conditions can be considerably dependent on
the basic values of initial conditions used in the investigation, par-
ticularly in the values of injection velocity and injection angle. This
limitation has led to fairly sizable differences in someof the tolerance
estimates given in the recent literature; these differences are primarily
due to differences in values of the injection v,._loclty and injection angle
considered. A discussion of the overall effects3 of injection velocity
and injection angle on allowable tolerances is _Lncluded.
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SYMBOLS

Refer to figures 1 and 2 for illustration _f some of the symbols

described below.

D distance from center of earth to center of moon, miles

m m mass of moon, _ mass of earth
81.49

mt total mass of earth and moon

P sidereal period of moon, based on assumed constant distance

from earth to moon, hr

rI nondimensional radius frc_ center of earth to space vehicle,

(x - Xl)2 + y2 + z2

r2 nondlmensional radius from center of moon to space vehicle,

f(x - x2) 2 + y2 + z2
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t

T

V

Vp

x I

x 2

x,y,z

nondimensional time, time in hours divided by P/2x

time of flight from earth to moon, hr

launch velocity (velocity at injection), ft/sec

parabolic, or escape, velocity at a given radius from earth

center (parabolic velocity is 55,584. 5 ft/sec at a radius

of 4,259 miles, the injection radius for all cases presented

in this paper), ft/sec

nondimensional distance from center of earth to center of mass

of earth-moon system, distance in miles divided by D

nondimensional distance from center of moon to center of mass

of earth-moon system, distance in miles divided by D

nondimensional position components of space vehicle measured

from center of mass of earth-moon system, distance in miles

divided by D

heading angle, zero for due east firing, positive for north of

east firing, and negative for south of east firing, deg

injection angle, angle between velocity vector and normal to

radius vector rI at injection point, deg

angle between plane of vehicle trajectory and earth-moon plane,
deg

firing angle, angle between radius vector rI at injection

and radius vector to target point, deg

ratio of mass of moon to total mass of earth and moon, mm/m t

position angle, angle between radius vector rI at injection

and earth-moon axis at injection, measured in earth-moon plane,

deg (errors in _ are related to errors in firing time, a

1° change in _ being approximately equal to 4 minutes change

in injection time)



TRAJECTORYCAIDULATIONS

Equations of Motion

The equations of motion of the restricted three-body problem have

been programed on an IBM type 704 electronic data processing machine

for step-by-step integration. In these equations, the finite bodies,

earth and moon, are considered to rotate in circles about their common

center of mass at a uniform angular velocity and the infinitesimal body,

the space vehicle, is subject to their gravitational attraction. The

xy plane is the plane of motion of the moon arot_d the earth and the

axis system is rotating about the origin of the coordinates, such that

the x-axis is the llne Joining the centers of the earth and moon. (See

fig. 1.) The distance between the centers of the earth and moon is the

unit of distance; the sum of the masses of the earth and moon is the

unit of mass; and P/2_ is the unit of time where P is the sidereal

period of the moon. With origin of coordinates at the center of mass of

the earth-moon system, the differential equatioI_s of motion of the space

vehicle are (see ref. 6):
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(x - Xl) (x - x2)d2x 2 --_: x - (i - _)

dt 2 dt r15 r23

--+2--:y- (i-_) -_ y
dt 2 dt rl r2}

d2z _ Z(l - _)z_ __
dt 2 _3rl r23

where

rI : q(x - Xl) 2 + y2 + z_!

r2 = I(x _ x2)2 + y2 + z_!

mm 1

mt 82.45
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xI = -0.0121286 : -

x2 = 0.9878714 = 81.45
82.25

With given initial values of velocity and position components_ the equa-

tions are integrated to give a time history of space-vehicle velocity

and position components with respect to the rotating axis system.

Initial Conditions

In the determination of the initial conditions_ two-body problem

results in the plane of the trajectory were used for preliminary estimates

of initial velocity, injection angle, and time of flight. Solutions of

spherical triangles utilizing the latitude of the injection point, declina-

tion of the moon at contact, and the maximum declination of the moon, in

conjunction with a due east heading of the vehicle at injection, provide

values of angular relations required for transformation of the preliminary

two-body results to the three-dimensional coordinates of the rotating axis

system. Small corrections in the initial velocity _d/or the heading and

position angles as determined from the preliminary two-body results were

required for achieving trajectories which would go through the center of

the moon or through a desired point with respect to the moon.

Except where otherwise noted, the initial conditions in this paper

are calculated for a due east injection from latitude 28o27.6 ' North and

an injection altitude of 300 statute miles (radius from center of earth

of 4,259 statute miles). The distance from the center of the earth to

the center of the moon (which is assumed to be constant) is chosen as

that for the moon at perigee for the month of September 1959 and is
229,100 statute miles. The maximum declination for that month is ±18.2 ° .

(Data are from ref. 7.) Declination of the moon at time of space-vehicle

contact or nearest approach varies between the limits of approximately 12 °

and 18 ° South for the examples given in this paper.

The injection angle used in most of the calculations presented in
this paper is 25 °. This angle was chosen on the basis of consideration

of the orientation of the retro-rocket for establishment of a close lunar

satellite. With the assumptions that the carrier rocket is spin-

stabilized at injection and that the retro-rocket is directed along the

spin axis, the retro-rocket orientation will remain fixed in inertial

coordinates. Maximum effectiveness of the retro-rocket velocity increment

is obtained when the retro-rocket thrust axis is alined along the velocity
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vector at the time of retro-rocket firing. On the basis of some pre-

liminary calculations, an injection angle c)f 25 ° appeared to give fair

alinement of the retro-rocket axis and the velocity vector at the time

of retro-rocket firing. It is not intended to imply that this injec-

tion angle is an optimum, and some calculations for an injection angle

of 17 ° are also presented.

Numerical Integration Accuracy

Although it is difficult to ascertain the accuracy of a computation

program using step-by-step integration, several tests have been made of

the machine program used for the present analysis to indicate whether

the accuracy obtained is within that required for the present purposes. I

The primary sources of inaccuracy in such a program are those due to

insufficiently small time intervals and those due to round-off errors

for a great number of time intervals. In _he present program, the time

interval for each step is adjusted in such a way that the difference in

results obtained for a step with a certain time interval and for two

steps with time intervals of one-half the 3ize of the first is kept

within a specified error criterion. As a _heck on the error criterion,

some trajectories were calculated with error criteria one-tenth and one-

hundredth of that used for the trajectories presented in this paper, and

these trajectories were compared with the original trajectory in the

vicinity of the moon. No differences in the trajectories were discernible

on a rather large scale (about ten times as large as that in fig. 4). A

partial check on round-off error was obtained by running a trajectory

backwards in time from a position near the moon and comparing the velocity

and position components with the initial values. Reasonably small devia-

tions were noted (of the order of 4 ft/sec in velocity and 1 mile in

position). The constant in Jacobi's integral (see ref. 6) was computed

and tabulated to help detect any large random error or incorrect input

in the program. Finally, it was noted throughout the analysis that small

changes in the initial conditions (of the order of 2 or 3 ft/sec for

velocity and 1 mile for position) gave consistent variations in the tra-

jectories in the vicinity of the moon. From such investigations, it is

concluded that the computation program is sufficiently accurate for the

present purposes.

RESULTS AND DISCU_SION

Trajectories and Error Analysi_ for Lunar Impact

Some typical impact trajectories which are aimed at the center of

the moon are shown in figure 3. The trajectories are plotted with respect

to the rotating axis system in which the _-axis is the llne joining the



centers of the earth and moonand rotates with the moon. For the values
of injection angle, injection latitude, and declination of the moonused
for these trajectories, it is seen that the space vehicle remains rela-
tively close to the earth-moon plane throughout its travel to the moon.

As in the case of the two-dimensional studies of reference 4, use
of the two-body results for initial velocity, injection angle, time of
flight, _id position angle are generally sufficiently accurate to achieve
impact on the moonin the three-dimensional case. (These parameters must,
of course, be properly transformed to the coordinate system used.) In
order to achieve trajectories aimed at the center of the moonrather than
those which simply impact somewhereon the surface, small adjustments in
the initial velocities and/or angles obtained from the two-body approxi-
mation are sometimesnecessary.

An error analysis was conducted to determine the accuracy required
in the initial conditions in order to achieve space-vehicle impact on
the moon. Individual variations were made in velocity, injection angle,
heading angle, and position angle from the basic values for trajectories
aimed at the center of the moon. A typical plot of the results obtained
from the trajectory calculations, in the rotating coordinate system and
in the vicinity of the moon, is shownin figure 4. From such calcula-
tions, estimates were madefor allowable errors in initial conditions
to impact on somepart of the moon.

Results of the impact error analysis are shownin figure 5. The
velocity tolerance increases with an increase in injection velocity and
then decreases; whereas the angular tolerances appear to approach an
asymptote for injection velocities near the escape velocity. The angle
is the heading angle, and the angle _ is related to firing time toler-
ance, a 1° change in @ being approximately equal to 4 minutes in firing
time. A comparison and discussion of the differences between the results
obtained from two- and three-dimensional error analyses are given in a
subsequent section.

Trajectories and Error Analysis for a Close Lunar Satellite

In the establishment of a close lunar satellite, it is necessary
to place the space vehicle close to the moon, at which position the
retro-rocket is fired to obtain a proper orbital velocity with respect
to the moon. It is of interest to determine the effect of errors in the
initial conditions on the accuracy of placing the lunar vehicle at a
desired target point with respect to the moon.

The target point for this error analysis is chosen somewhatarbi-
trarily as a point approximately 5,000 miles below the center of the
moon, measuredperpendicular to the earth-moon plane. A lunar orbit
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initiated approximately above or below the lunar poles I will result in a

nearly polar orbit and insure complete reconnaissance coverage of the

lunar surface over a period of one-half month.

Initial conditions were determined for placing the vehicle approxi-

mately 5_000 miles below the center of the moon. Variations were made

in the initial conditions to study the resulting miss distances from

the target point. Typical trajectories in the vicinity of the moon, in

the rotating axis system, are shown in figures 6 to 8. These figures

show how the various changes in initial injection conditions affect the

trajectories and miss distances in the plaue of the moon's travel and

in the plane normal to this plane. The figures also show how the tra-

jectories approach the moon more nearly normal to the direction of the

moon's motion as the initial velocity is increased. The time of flight

to the target point and the velocity with respect to the moon at the

target point are shown in figure 9.

Some trajectories have been calculated for W = 17 ° to give an

indication of the effects of a different v_lue of the injection angle.

The basic conditions for these trajectories are also those for a due

east injection from latitude 28o27.6 ' Nort_ (the latitude of Cape

Canaveral, Florida) and with an initial velocity equal to the parabolic

velocity. These trajectories are shown in figure 8. The main differ-

ences in changing the injection angle from 25 ° to 17 ° for these basic

conditions are that the initial plane of motion of the space vehicle is

more inclined to the earth-moon plane for the smaller injection angle

(approximately 18 ° for 7 = 17 ° as compared with 12 ° for W = 25°)_

and the orientation of the space-vehicle s_in axis is modified. The

effect of the greater inclination of the planes is seen particularly in

the greater miss distances in the xz plane for equal velocity errors in

figure 8 as compared with figure 7. Optlm_m values of the injection angle

have not been obtained for this analysis and determination of the optimum

values should be considered. Conflicting requirements on the best value

for injection angle result from considerations of: allowable errors in

launch conditions, velocities obtainable from the boost vehicle, aero-

dynamic heating, alinement of retro-rocket with respect to the velocity

vector at time of retro-rocket firing, and so forth.

In order to provide a comparison between the present analysis and

the impact-error analysis, estimates were r_de of the allowable errors

in initial conditions for the space vehicle to penetrate a hypothetical

sphere with radius equal to that of the mo(,n but located with center

approximately 5,000 miles below that of th¢_ moon. The results for this

iFor the purposes of this analysis, it is assumed that the lunar

polar axis is normal to the earth-moon pl_e, whereas it is actually

inclined to the normal by approximately 5° .
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target-point error analysis are presented along with the results of the

impact-error analysis in figure 5- The comparison indicates that more

accuracy is required (about twice the angular accuracy) to hit within a

spherical surface situated at this distance below the moon than is

required to hit the moon. Some calculations for a target point approxi-

mately 3,000 miles below the center of the moon indicate that the accuracy

required at this closer distance is approximately the same as that required
at the greater distance. Combinations of errors in the initial conditions

were investigated for several trajectories, and the miss distances were

found to be directly additive for the range of errors investigated.

Lunar Satellite Orbit Considerations

It is of interest to determine the characteristics of lunar satel-

lite orbits obtainable for some of the trajectories presented in fig-
ures 6 to 8. The characteristics of the lunar orbits obtainable and the

amount of retro-rocket incremental velocity required will depend primarily

on the distance of the vehicle from the moon, the retro-rocket orienta-

tion at the time of retro-rocket firing, and on the initial injection

velocity. If the carrier rocket is assumed to be spin-stabilized at

injection and the retro-rocket is assumed to be directed along the spin-

axis, the retro-rocket orientation will remain fixed in inertial

coordinates.

For this situation, values of the retro-rocket incremental velocity

required to obtain polar orbits of the minimum eccentricity have been

calculated by use of the two-body (moon-satelllte) equations for the

basic cases. These results are presented in figure 10. The retro-rocket

is fired when the vehicle reaches the target point approximately

5,000 miles directly beneath the moon. For the basic cases of figures 6
to 8, the orientation of the retro-rocket thrust axis at the time of retro-

rocket firing is indicated in the earth-moon plane and in the plane normal

to the earth-moon plane by the lines with arrows. The apsides of the

lunar orbits obtained with the indicated amount of retro-rocket velocity

are shown in the bottom part of figure 10. For _ = 25 °, nearly circular

orbits are obtained for launch velocities near parabolic velocity. The

comparison of the apsides of the orbits for _ = 25 ° and 7 = 17 ° at

V
- 1.O shows that a relatively small change in the injection angle

vp
and the corresponding change in the orientation of the retro-rocket can

have a considerable effect on the characteristics of the lunar orbit.

If the orientation of the retro-rocket were controllable so that

the retro-rocket axis could be alined with the velocity vector at the

point of retro-rocket firing, less retro-rocket velocity increment would

be required (as shown in the curve in fig. 10) and circular orbits could
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be obtained. Orientation control of the retro-1_ocket would, however,
involve a more complicated system than the simple spin-stabilized system.

Calculations have been madeto showthe efJ'ects of errors in the
initial launch conditions on the characteristic_ of the lunar orbits.
These calculations were madefor velocity ratios of 0.99247 and 1.000
for _ = 25° , and 1.000 for 7 = 17°. The retro-rocket axis is assumed
to be fixed in inertial coordinates at injection, and the retro-rocket
is fired at a point along the trajectory (at approximately the closest
approach to the moon) denoted by the ticks in figures 6 to 8. As mentioned
previously, the orientation of the retro-rocket thrust axis for the basic
cases of figures 6 to 8 is indicated by the lin_s with arrows.

The initial apsides of the lunar orbits and the orbital inclination
with respect to the lunar polar axis are shownas functions of errors
in the initial conditions in figures ll to 13. These characteristics
were calculated by use of two-body equations. For 7 = 25°, figures ii
and 12 showthat reasonably close orbits can be achieved with tolerances
in the initial conditions of the order of those required for lunar impact.
For 7 = 17°, figure 13 indicates that someof _he orbits obtained are
probably not acceptable, largely because the o_.it for the basic case has
a large eccentricity. This figure simply illus,,rates that careful con-
sideration must be given to the choice of injec:.ion angle, and thus retro-
rocket orientation, for achieving satisfactory c_rbits. It is interesting
to note from figures 8 and 15 that there is apparently a strong effect
of the radius at which the retro-rocket is fired on the apsides of the
orbits so that whenthe retro-rocket is fired at smaller radii than that
of the original target point, more favorable o_,its are obtained. This
effect indicates that, if one is limited to a p_ticular range of injec-
tion angle, it might be possible that adJustmen_,sin the radius at which
the retro-rocket is to be fired and in the amountof retro-rocket velocity
provided could produce satisfactory orbits.

In order to evaluate the use of two-body (moon-satellite) equations
for calculation of the apsides of the orbits and to investigate stability
of the orbits, three-body calculations were performed on the electronic
computer for someof the cases shownin figures ii to 13. The two-body
and three-body calculations for the initial aps_des of the orbits for
the cases in figures ii and 12 give practically identical results; thus,
the use of two-body equations is justified for :nitial orbital calcula-
tions in the vicinity of the moon. For someof the cases shownin fig-
ure 13, where the upper apsis is large, the two-_ody calculations were
not very good approximations, although they are still useful for indi-
cating the orbits which might be unstable.

The three-body orbital calculations were _m for real times corre-
sponding to about i month to investigate the stability of the orbits.
It can be demonstrated from energy considerations that, for the orbits
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investigated in figures ii and 12, the satellite cannot escape from the

vicinity of the moon. Although these orbits appear to be relatively

stable, they do show a gradual increase in eccentricity with time; this

increase indicates a possibility of eventual collision with the moon.

It is not considered practical to perform machine computations for suf-

ficient lengths of time to determine whether and when collisions would

occur for these preliminary demonstration orbits, but such computations

would be desirable for studies leading to an actual moon shot. Some of

the orbits for which the initial apsides are shown in figure 13 are

unstable (for instance, AV = -80 and -40 ft/sec; _7 = 0.5o; L_8 = -0.5°;

and 2@ = 0.4o), and the satellite either impacts on the moon or escapes

from the vicinity of the moon after only one or two revolutions.

Effect on the Velocity Tolerance of InJection Angle

and Inclination of Plane of Vehicle Trajectory

to Earth-Moon Plane

Although the angular tolerances in initial conditions for a particular

lunar mission approach an asymptote as the initial velocity is increased,

the velocity tolerance reaches a maxlmumvalue for initial velocities

near the parabolic velocity. These effects are demonstrated in the error

analyses for the missions of lunar impact and of placing the space vehicle

within a desired position with respect to the moon in figure 5. If, then,

for any of several reasons it is desired to launch the vehicle with a

velocity near the parabolic velocity, it is profitable to consider the

range of injection velocities that might give the greatest velocity

tolerance, the angular tolerances being essentially constant in this

range. This section is primarily devoted to a discussion of tolerances

in the initial injection velocity and the influence of several factors

on this velocity tolerance.

Two-dimensional velocity tolerance curve and effect of injection

angle.- The general nature of the variation in allowable error in the

initial velocity for impact somewhere on the surface of the moon is to

be considered as a function of the initial velocity. A simple two-body

analysis has been helpful in defining this curve for the case in which

the space vehicle remains always in the earth-moon plane (two-dimensional

case). From the closed solutions for the classical restricted two-body

problem (in this case, earth and space vehicle), one can calculate the

time of flight to a radius from the earth corresponding to that of the

moon, and the angular difference e between the initial radius vector and

the radius vector to the target point, measured in the plane of the

satellite. The effect of changes in the initial launch velocity on the

time of flight and on the angle e can be determined. The change in posi-

tion of the moon with respect to the original target point is related
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to the change in time of flight, whereas the change in position of the
space vehicle is related to the change in the _gle e. The difference
between the angular change in position of the moonand the change in
position of the vehicle, as a function of the change in initial velocity,
is comparedwith the allowable angular difference for impact on the moon.
This comparison gives a meansfor estimating the velocity tolerance for
lunar impact.

The results of such a two-body, two-dimensional analysis are pre-
sented as the curves in figure 14, in which are plotted the allowable
errors in initial velocity to impact on somepa_t of the lunar surface,
as a function of initial velocity, for two values of injection angle.
Also shownin figure 14 are somepoints obtained from a three-body error
analysis conducted in the samemanner as the error analyses shownin
figure 5. (All of these calculations are again for injection at a radius
from center of earth of 4,259 miles and an earth-moon distance of
229,100 miles). The two-body calculations were devised to give a general
indication of the nature of the velocity tolerance curve; comparison of
these results with the three-body results indicates that the agreement
is reasonably good.

Perhaps the most striking feature of the allowable error curves in
figure 14 is the existence of the reflex points and the branches in the
curves. The reflex points and branches result from the fact that the
rate of change of e with time of flight (both expressed in radlan
measure) increases from values less than i to v_lues greater than i as
the initial velocity increases. This condition simply meansthat
increases in velocity above a sufficiently low ralue of basic initial
velocity for which lunar impact is obtained cause the vehicle trajectories
to move relatively more and more out in front o_ the moonuntil a certain

value of initial velocity is reached t which - i. . Additional
T

d
increases in velocity cause the trajectories to again approach the moon,

sweep across, and then pass off behind the moon. This situation gives

the double-valued portions of the curves shownby the branches. At the

reflex points, the trajectories move with respezt to the moon up to the

forward edge of the moon for increase in initial velocity; then, without

passing off the front of the surface, additional increases in velocity

cause the trajectories to move back toward the trailing edge and off

behind the moon.

The practical significance of the reflex points is that for initial

velocities near these points the maximum toleraaces in injection velocity

are obtained. The velocity tolerances can be very large. For instance,

for 7 = 25° and an injection velocity ratio to parabolic velocity of

L
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about 1.002, the three-body error analysis indicates allowable velocity

errors for lunar impact of about 700 and -80 feet per second.

Some other interesting features are illustrated by the curves of

figure 14. The effect of injection angle is shown by a comparison of

the upper and lower sets of curves. For a large injection angle,

= 25 ° , the overall allowable errors are greater than for y = 0 °.

However, the velocity for maximum allowable errors, that is, the reflex

point, occurs at higher values of initial velocity as the injection

angle is increased. (This trend has also been checked at an intermediate

value of injection angle.) Thus, for injection at parabolic velocity,

the allowable velocity errors for impact are 270 and -lO0 feet per sec-

ond for 7 = 0°, but only ll0 and -60 feet per second for 7 = 25 °. It

can be seen, therefore, that results from error analyses made at isolated

values of injection velocity and injection angle can be misleading. Ref-

erence 4 presents a curve of allowable velocity error for impact as a

function of initial velocity for the two-dimensional case which shows an

increase near parabolic velocity and a decrease at velocities greater

than parabolic, but the curve did not contain the discontinuities shown

in figure lb.

Another point illustrated by figure 14 is that, for trajectories

aimed at the center of the moon, equal values of positive and negative

velocity tolerance are obtained only for injection velocities considerably

higher than the velocity at the reflex point, and the overall tolerance

for this condition is not the maximum. However, this situation can be

corrected by aiming not at the center of the moon or other target point,
but somewhat in front of or behind it.

Effect of inclination of plane of tra_ector_ to earth-moon plane.-
The discussion in the previous section applies to trajectories which

always remain in the earth-moon plane. For space vehicle launchings

from latitudes greater than the maximum declination of the moon, it is

no longer possible to launch the vehicle in the earth-moon plane without

corrective guidance considerations, and the inclination of the vehicle

trajectory to the earth-moon plane has a considerable effect on the

velocity tolerance for lunar impact. Figure 15 shows a comparison of

the results from the impact error analyses for injection from latitude

28°27.6 ' North and for injection in the earth-moon plane with data from

figures 5 and 14. Because of the inclination of the planes, the results

for injection from a moderate latitude no longer have double values or

reflex points, and the allowable velocity tolerance for achieving lunar

impact is considerably less than that from the two-dimensional analysis.

It is again seen that results from two-dimensional analyses can be some-

what misleading if applied to vehicle injections from a moderate latitude.

With a modification of the simple two-body analysis described above

to include the effect of inclination of the plane of the vehicle trajectory
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to the earth-moon plane, some observations can be made concerning the

overall effect of this inclination. The results of such an analysis are

presented in figure 16 for a range of inclinations from vehicle trajectory

in the plane of the moon to trajectory inclined 50° to the plane of the

moon. The comparison shows that, even for small angles of inclination

between the planes, the velocity tolerance is greatly reduced at certain

values of initial velocity as compared with the tolerance for the two-
dimensional case.

Some indication of the effect of initial latitude can be determined

from figure 16. With the maximum declination of the moon of about 18.2 °

and with a due east heading, _ = ll.5 ° corresponds to injection from

Latitude of about 28.5 ° and _ = 30° from latitude of about 45°. (The

minimum values of q for these latitudes are 10.3 ° and 26.8 °, respec-

tively.) The allowable tolerance in initial velocity for lunar impact

for injection from the higher latitude is about half of that for injec-

tion from the lower latitude.

The two-body analysis, including consideration of the inclination

of the plane of the vehicle trajectory to the earth-moon plane, is also

useful in estimating the allowable velocity and injection angle for

hitting within the sphere with radius equ_1 to that of the moon but

located approximately 5,000 miles below tl_ center of the moon. The

curves in figure 17 are for the two-body results and the circle symbols

are results obtained from the three-body analysis. For this mission,

the gravitational influence of the moon is relatively constant through-

out the hypothetical target sphere, and the two- and three-body cal-

culations show good agreement.

CONCLUDING REM_flKB

From an analysis of three-dimension__ lunar trajectories, calculated

with use of the equations of motion of th_ classical restricted three-

body problem of celestial mechanics and c)nsideration of some lunar

exploration missions, some general remark_ can be made.

The allowable errors (particularly i] the velocity tolerance) in

initial conditions for achieving lunar impact or for hitting within a

prescribed region with respect to the moon are strongly dependent on the

values of initial injection velocity and injection angle. Also, there

can be large differences in results obtained from two-dimensional analyses

(in which the vehicle trajectory is assumed to remain always in the earth-

moon plane) and those obtained from three-dlmensional analyses, even for

relatively sz_ll inclination angles between the plane of the vehicle

trajectory and the earth-moon plane. It has been found that some of

these accuracy tolerances can be fairly well estimated by use of a two-body



15

analysis which considers the inclination of the plane of the vehicle to

the earth-moon plane.

The accuracy required to hit within a hypothetical sphere with

radius equal to the moon radius, but with center a few thousand miles

from the center of the moon, is greater than that required to hit the

moon. However, satisfactory orbits for a relatively close lunar satel-

lite can be obtained with accuracies in initial conditions approximately

equal to those required for lunar impact. When the space vehicle is

spin-stabillzed at injection, careful consideration must be given to the

choice of injection angle (and thus retro-rocket orientation) in order

to achieve satisfactory lunar orbits.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., April 27, 1959.
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